Hypermutability to ionizing radiation in mismatch repair-deficient, Pms2 knockout mice.
نویسندگان
چکیده
DNA mismatch repair (MMR) has been shown to play a role in the cytotoxicity of ionizing radiation (IR), as cell lines established from MMR-deficient mice exhibit higher clonogenic survival after IR than do cell lines from wild-type littermates. To test whether this tolerance phenotype would render MMR-deficient animals hypermutable to IR, we compared IR mutagenesis of Pms2-deficient versus wild-type transgenic mice carrying a lambda shuttle vector for mutation detection. In Pms2 nullizygous animals, the mutation frequency in the supFG1 reporter gene was increased from 210 x 10(-5) in untreated animals to 734 x 10(-5) after 6 Gy of IR (an increase of 524 mutants per 10(5)), whereas the frequency in wild-type mice increased from 1.9 x 10(-5) to 10.2 x 10(-5) (an increase of only 8.3 mutants per 10(5)). Similarly, when the lambda cII gene was used as a reporter, the mutation frequency in nullizygous mice was increased from 16.3 x 10(-5) to 42.3 x 10(-5) after IR (an increase of 26.0 x 10(-5)), whereas the frequency in wild-type mice increased from 2.4 x 10(-5) to 9.4 x 10(-5) (an increase of only 7.0 x 10(-5)). The pattern of IR-induced mutations in the MMR-deficient animals was notable for single bp deletions and insertions in mononucleotide repeat sequences, along with a slight increase in transversions. Overall, these results suggest that MMR-deficiency confers hypermutability to IR, and that much of this hypermutability can be attributed to induced instability of simple sequence repeats. Hence, MMR influences not only the survival but also the mutability of cells in response to IR.
منابع مشابه
Mutagenesis in PMS2- and MSH2-deficient mice indicates differential protection from transversions and frameshifts.
DNA mismatch repair (MMR) deficiency leads to an increased mutation frequency and a predisposition to neoplasia. 'Knockout' mice deficient in the MMR proteins Msh2 and Pms2 crossed with mutation detection reporter (supF, lacI and cII) transgenic mice have been used to facilitate a comparison of the changes in mutation frequency and spectra. We find that the mutation frequency was consistently h...
متن کاملDifferent Mismatch Repair Deficiencies All Have the Same Effects on Somatic Hypermutation
Somatic hypermutation of Ig genes is probably dependent on transcription of the target gene via a mutator factor associated with the RNA polymerase (Storb, U., E.L. Klotz, J. Hackett, Jr., K. Kage, G. Bozek, and T.E. Martin. 1998. J. Exp. Med. 188:689-698). It is also probable that some form of DNA repair is involved in the mutation process. It was shown that the nucleotide excision repair prot...
متن کاملAltered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2.
Mutations are introduced into rearranged Ig variable genes at a frequency of 10(-2) mutations per base pair by an unknown mechanism. Assuming that DNA repair pathways generate or remove mutations, the frequency and pattern of mutation will be different in variable genes from mice defective in repair. Therefore, hypermutation was studied in mice deficient for either the DNA nucleotide excision r...
متن کاملMale mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis
Using gene targeting in embryonic stem cells, we have derived mice with a null mutation in a DNA mismatch repair gene homolog, PMS2. We observed microsatellite instability in the male germline, in tail, and in tumor DNA of PMS2-deficient animals. We therefore conclude that PMS2 is involved in DNA mismatch repair in a variety of tissues. PMS2-deficient animals appear prone to sarcomas and lympho...
متن کاملIonizing radiation-induced apoptosis via separate Pms2- and p53-dependent pathways.
The cytotoxicity of ionizing radiation (IR) has been associated with both the p53 pathway and with DNA mismatch repair (MMR). p53 mediates cell cycle arrest and apoptosis in response to X-ray damage, whereas the MMR complex is thought to recognize damaged bases and initiate a signal transduction pathway that can include phosphorylation of p53. To determine whether p53 and MMR mediate X-ray cyto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 61 9 شماره
صفحات -
تاریخ انتشار 2001